Deteksi Pola Kunjungan Pasien Berdasarkan Status Kesehatan Menggunakan Algoritma DBSCAN
(1) Universitas Medan Area
(2) Universitas Medan Area
Keywords
Full Text:
PDFReferences
Stewart, N., & Al-Khassaweneh, M. (2022). An implementation of the HDBSCAN* clustering algorithm. Applied Sciences, 12(5), 2405. https://doi.org/10.3390/app12052405
Vijayan, D., & Aziz, I. (2023). Adaptive hierarchical density-based spatial clustering algorithm for streaming applications. Telecom, 4(1), 1–14. https://doi.org/10.3390/telecom4010001
Cesario, E., Lindia, P., & Vinci, A. (2023). Detecting multi-density urban hotspots: A DBSCAN and HDBSCAN approach. Big Data and Cognitive Computing, 7(1), 29. https://doi.org/10.3390/bdcc7010029
Estro, T., Antunes, M., Bhandari, P., Gandhi, A., Kuenning, G., Liu, Y., Waldspurger, C., Wildani, A., & Zadok, E. (2024). Accelerating multi-tier storage cache simulations using knee detection. Performance Evaluation, 164, 102410. https://doi.org/10.1016/j.peva.2024.102410
Hanafi, N., & Saadatfar, H. (2022). A fast DBSCAN algorithm for big data based on efficient density calculation. Expert Systems with Applications, 203, 117501. https://doi.org/10.1016/j.eswa.2022.117501
Ma, B., Yang, C., Li, A., Chi, Y., & Chen, L. (2023). A faster DBSCAN algorithm based on self-adaptive determination of parameters. Procedia Computer Science, 221, 2901–2910. https://doi.org/10.1016/j.procs.2023.07.017
Fok, T. Y., & Ye, N. (2025). Kneeliverse: A universal knee-detection library. SoftwareX, 26, 102161. https://doi.org/10.1016/j.softx.2025.102161
(2025). GraphDBSCAN: Optimized DBSCAN for noise-resistant community detection in graph clustering. Future Internet, 17(4), 150. https://doi.org/10.3390/fi17040150
(2025). Scalable clustering of complex ECG health data: Big data clustering analysis with UMAP and HDBSCAN. Computation, 13(6), 144. https://doi.org/10.3390/computation13060144
(2023). Improvement of DBSCAN algorithm based on K-Dist graph for adaptive determining parameters. Electronics, 12(15), 3213. https://doi.org/10.3390/electronics12153213
(2023). Fast multidimensional scaling on big geospatial data using neural networks and DBScan clustering. Earth Science Informatics, 16, 4015–4031. https://doi.org/10.1007/s12145-023-01004-9
Blanco-Portals, J., Peiró, F., & Estradé, S. (2022). Strategies for EELS data analysis: Introducing UMAP and HDBSCAN for dimensionality reduction and clustering. Microscopy and Microanalysis, 28(S1), 109–122. https://doi.org/10.1017/S1431927621013696
Wongoutong, C. (2024). The impact of neglecting feature scaling in k-means clustering. PLOS ONE, 19(12), e0310839. https://doi.org/10.1371/journal.pone.0310839
Zhao, Z., Zhou, W., Liang, D., Liu, W., Lee, X., et al. (2024). Denoising method based on improved DBSCAN for LiDAR point cloud. IEEE Access, 12, 3464611. https://doi.org/10.1109/ACCESS.2024.3464611
Wang, Z., Shi, H., Sun, Y., Liu, H., & Chen, X. (2025). Application of three-dimensional HDBSCAN for identifying abnormal working areas of ships based on fish migration. Applied Sciences, 15(5), 2621. https://doi.org/10.3390/app15052621
(2024). Constrained density-based spatial clustering of applications with noise and multiple objectives. Knowledge-Based Systems, 296, 111070.
https://doi.org/10.1016/j.knosys.2024.111070
Khairina, N., Sibarani, T. T. S., Muliono, R., Sembiring, Z., & Muhathir, M. (2022). Identification of pneumonia using the K-nearest neighbors method using HOG feature extraction. JITE (Journal of Informatics and Telecommunication Engineering), 5(2), 563–569. https://doi.org/10.31289/jite.v5i2.6216
Alwi, B., & Muliono, R. (2025). Analisis Klustering Menggunakan Algoritma DBSCAN untuk Deteksi Anomali dalam Data Transaksi Keuangan. INCODING: Journal of Informatic and Computer Science Engineering, 3(2). https://doi.org/10.34007/incoding.v5i1.827
DOI: https://doi.org/10.34007/incoding.v5i2.979
Article Metrics
Abstract view : 67 timesPDF - 5 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 INCODING: Journal of Informatics and Computer Science Engineering



