Aspect Based Sentiment Analysis on Hotel Reviews Using Gated Recurrent Unit
(1) Universitas Sumatera Utara
(2) Universitas Sumatera Utara
Keywords
Full Text:
PDFReferences
Alif, Faris Zharfan. (2020). Ekstraksi Fitur untuk Pemilihan Topik Spesifik Review Film
Amidi, A., dan Amidi, S. (2018). Recurrent Learning for Aspect-Based Sentiment Analysis on Indonesian Hotel Reviews. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control. https://doi.org/10.22219/kinetik.v6i3.1300
[APJII] Asosiasi Penyelenggara Jasa internet Indonesia. (2018). Profil Pengguna Internet Indonesia. Jakarta: Asosiasi Penyelenggara Jasa Internet Indonesia
Cahyaningtyas, S., Hatta Fudholi, D., & Fathan Hidayatullah, A. (2021). Deep Caniago, A. I., Kaswidjanti, W., & Juwairiah,
J. (2021). Recurrent Neural Network With Gate Recurrent Unit For Stock Price Prediction. Telematika, 18(3), 345. https://doi.org/10.31315/telematika.v18i3.66 50
Dcunha, P. (2019). Aspect-Based Sentiment Analysis and Feedback Ratings using Natural Language Processing on European Hotels MSc Research Project Master's in Data Analytics.
Ferdiana, R., Jatmiko, F., Purwanti, D. D., Sekar, A., Ayu, T., & Dicka, W. F. (2019). Dataset Indonesia untuk Analisis Sentimen. In JNTETI (Vol. 8, Issue 4).
Hasib, K. M. (2022). Sentiment Analysis on Bangladesh Airlines Review Data using Machine Learning.
Hendrawan, I. R., Utami, E., & Hartanto, A.D. (2022). Comparison of Naïve Bayes Algorithm and XGBoost on Local Product Review Text Classification. Edumatic: Jurnal Pendidikan Informatika, 6(1), 143–149. https://doi.org/10.29408/edumatic.v6i1.5613
Hutabarat, Fani Theresa. (2021). Identifikasi Judul Clickbait Pada Berita Bahasa Indonesia Menggunakan Gated Recurrent Unit. Skripsi
Langgeni, D. P., Abdurahman Baizal, Z. K., & Firdaus, Y. (2010). Clustering Artikel Berita Berbahasa Indonesia Menggunakan Unsupervised Feature Selection. Seminar Nasional Informatika.
Lee, J. S., Zuba, D., & Pang, Y. (2019). Sentiment analysis of Chinese product reviews using gated recurrent unit. Proceedings - 5th IEEE International Conference on Big Data Service and Applications, BigDataService 2019, Workshop on Big Data in Water Resources, Environment, and Hydraulic Engineering and Workshop on Medical, Healthcare, Using Big Data Technologies, 173–181. https://doi.org/10.1109/BigDataService.2019.00030
Liu, B. (2012). Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers.
Nayak, A. S., & Kanive, A. P. (2016). Survey on Pre-Processing Techniques for Text Mining. International Journal Of Engineering And Computer Science. https://doi.org/10.18535/ijecs/v5i6.25
A. Normasari, S., Kumadji, S., & Kusumawati, (2013). Pengaruh Kualitas Pelayanan Terhadap Kepuasan Pelanggan, Citra Perusahaan Dan Loyalitas Pelanggan.
Pontiki, M., Galanis, D., Papageorgiou, H., Androutsopoulos, I., Manandhar, S., AL-Smadi, M., Al-Ayyoub, M., Zhao, Y., Qin, B., de Clercq, O., Hoste, V., Apidianaki, M., Tannier, X., Loukachevitch, N., Kotelnikov, E., Bel, N., Jiménez-Zafra, S. M., & Eryiğit, G. (2016). SemEval-2016 Task 5: Aspect-Based Sentiment Analysis. Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), 19–30. https://doi.org/10.18653/v1/S16-1002
Prabowo, R., & Thelwall, M. (2009). Sentiment analysis: A combined approach. Journal of Informetrics, 3(2), 143–157. https://doi.org/10.1016/j.joi.2009.01.003
Ray, B., Garain, A., & Sarkar, R. (2021). An ensemble-based hotel recommender system using sentiment analysis and aspect categorization of hotel reviews. Applied Soft Computing, 98, 106935.
Samsidar. (2017). Pengaruh Kualitas Pelayanan Terhadap Kepuasan Konsumen Dalam Penggunaan Jasa Hotel Denpasar Makassar. Skripsi.
Silalahi, J. G. (2021). Aspect Based Sentiment Analysis Pada Review Produk Kecantikan Menggunakan Extreme Gradient Boosting. Skripsi.
Wildan Putra Aldi, M., & Aditsania, A. (2018). Analisis dan Implementasi Long Short Term Memory Neural Network untuk Prediksi Harga Bitcoin.
Zhao, N., Gao, H., Wen, X., & Li, H. (2021). Combination of a convolutional neural network and a gated recurrent unit for aspect-based sentiment analysis. IEEE Access, 9, 15561– 15569. https://doi.org/10.1109/ACCESS.2021.30529 37
DOI: https://doi.org/10.34007/incoding.v5i1.710
Article Metrics
Abstract view : 32 timesPDF - 3 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 INCODING: Journal of Informatics and Computer Science Engineering