Penerapan Mobilenetv3 untuk Klasifikasi Jenis Bahan Pakaian
(1) Universitas Medan Area
(2) Universitas Medan Area
Keywords
Full Text:
PDFReferences
S. Y. Lee, H. S. Jeong, Y. S. Choi, and C. K. Lee, Textile material classification in clothing images using deep learning, vol. 12, no. 7. Korean Institute of Smart Media, 2023. doi: 10.30693/smj.2023.12.7.43.
Z. Wu, X. Liu, and Y. Wang, “A deep learning-based multi-layer approach for textile classification,” Pattern Recognit. Lett., vol. 140, pp. 49–56, 2021.
S. Alamgunawan and Y. Kristian, “Klasifikasi Tekstur Serat Kayu pada Citra Mikroskopik Veneer Memanfaatkan Deep Convolutional Neural Network,” INSYST J. Intell. Syst. Comput., vol. 2, no. 1, pp. 6–11, 2020.
W. Bismi, D. Novianti, and M. Qomaruddin, “Analisis Perbandingan Klasifikasi Citra Genus Panthera dengan Pendekatan Deep learning Model MobileNet,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 6, no. 1, pp. 1–9, 2024.
R. Adolph, “Perkembangan teknologi,” in 2022 IEEE Symposium Series on Computational Intelligence (SSCI, 2016, pp. 1–23.
S. A. S. Hesham et al., “Adapted Lightweight MobileNet for Tire Pattern Classification,” in Proceedings of the 18th IEEE Conference on Industrial Electronics and Applications, ICIEA 2023, 2023, pp. 191–196. doi: 10.1109/ICIEA58696.2023.10241883.
L. Cheng, J. Yi, A. Chen, Y. Zhang, and C. Hou, “Fabric material identification based on Densenet variant networks,” J. Text. Inst., vol. 114, no. 10, pp. 1527–1538, 2023, doi: 10.1080/00405000.2022.2144600.
B. Wei, B. Xu, K. Hao, and L. Gao, “Textile defect detection using multilevel and attentional deep learning network (MLMA-Net),” Text. Res. J., vol. 92, no. 19–20, pp. 3462–3477, 2022, doi: 10.1177/00405175211073773.
W. Dhermawan, Susilawati, Muhathir, R. Muliono, A. H. Lubis, and N. Khairina, “Enhancing Succulent Plant Species Classification: A MobileNetV3-Large Approach,” in Proceeding - 2024 International Conference on Information Technology Research and Innovation, ICITRI 2024, IEEE, 2024, pp. 146–151. doi: 10.1109/ICITRI62858.2024.10699002.
M. Sabuncu and H. Ozdemir, “Classification of Material Type from Optical Coherence Tomography Images Using Deep Learning,” Int. J. Opt., vol. 2021, 2021, doi: 10.1155/2021/2520679.
A. N. A. Setiana, “Robot pemilahan sampah berbasis Raspberry Pi menggunakan Algoritma Convolutional Neural Network dengan MobileNet,” Fakultas Sains Teknologi UIN Syarif Hidayatullah Jakarta, 2020.
M. F. A. Hele, “Penerapan Deep Learning Dengan Algoritma CNN Untuk Klasifikasi Varietas Beras Menggunakan Arsitektur MobileNetV3,” Universitas Muhammadiyah Malang, 2025.
D. Azhar, R. Kurniawan, W. Marsisno, B. Yuniarto, Sukim, and Sugiarto, “Implementing deep learning-based named entity recognition for obtaining narcotics abuse data in Indonesia,” IAES Int. J. Artif. Intell., vol. 13, no. 1, pp. 375–382, 2024, doi: 10.11591/ijai.v13.i1.pp375-382.
P. U. Wasista et al., Desain Interior: Teori dan Perkembangannya. SIDYANUSA, 2024.
N. H. Maulida, B. Hidayat, S. Saâ, and others, “Pengenalan Kain Sasirangan Berdasarkan Tekstur Dengan Filter Gabor, Template Matching dan Klasifikasi Decision Tree,” eProceedings Eng., vol. 6, no. 1, 2019.
Y. Xu et al., “Cross-Modal Fusion Convolutional Neural Networks With Online Soft-Label Training Strategy for Mechanical Fault Diagnosis,” IEEE Trans. Ind. Informatics, vol. 20, no. 1, pp. 73–84, 2024, doi: 10.1109/TII.2023.3256400.
S. Zu, Y. Jin, and Y. Li, “Generalwise Separable Convolution for Mobile Vision Applications,” Proceedings of the 2022 IEEE Symposium Series on Computational Intelligence, SSCI 2022. pp. 1074–1081, 2022. doi: 10.1109/SSCI51031.2022.10022267.
S. Cai, W. Zhu, K. Chen, and H. Qin, “Textile fabric image classification method based on enhanced deep learning features,” vol. 12709, p. 207, 2023, doi: 10.1117/12.2684999.
A. F. Al Hafidz, E. Y. Puspaningrum, and A. L. Nurlaili, “PENERAPAN LIGHTGBM MENGGUNAKAN EKSTRAKSI FITUR RUANG WARNA HSV UNTUK KLASIFIKASI REMPAH RIMPANG,” JATI (Jurnal Mhs. Tek. Inform., vol. 9, no. 3, pp. 5492–5498, 2025.
I. A. Pardosi, “A Review: Oriented Object Detection with Shadows and Noise,” 2020.
A. S. M. Siam, Y. Arafat, M. M. Talukdar, M. Mehedi Hasan, and R. Rahman, “TextileNet: A Deep Learning Approach for Textile Fabric Material Identification from OCT and Macro Images,” in 2023 26th International Conference on Computer and Information Technology, ICCIT 2023, 2023, pp. 1–6. doi: 10.1109/ICCIT60459.2023.10441457.
DOI: https://doi.org/10.34007/incoding.v5i2.829
Article Metrics
Abstract view : 14 timesPDF - 3 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 INCODING: Journal of Informatics and Computer Science Engineering