Meningkatkan Deteksi Email Phising Melalui Pendekatan SVM yang Dioptimalkan NLP

Rino Nurcahyo Fauzi Tanjung(1), Sayuti Rahman(2),


(1) Universitas Medan Area
(2) Universitas Medan Area
DOI: https://doi.org/10.34007/incoding.v5i1.831

Keywords


Phishing Email; Natural Language Processing; Support Vector Machine; TF-IDF.

Full Text:

PDF

References


J. Lynch, “Identity theft in cyberspace: Crime control methods and their effectiveness in combating phishing attacks,” Berkeley Tech. LJ, vol. 20, p. 259, 2005.

D. Fatmala Putri and W. Ratna Sari, “Analisis Perlindungan Nasabah BSI Terhadap Kebocoran Data Dalam Menggunakan Digital Banking,” J. Ilm. Ekon. dan Manaj., vol. 1, no. 4, pp. 173–181, 2023, [Online]. Available: https://doi.org/10.61722/jiem.v1i4.331

P. Y. Leonov, A. V. Vorobyev, A. A. Ezhova, O. S. Kotelyanets, A. K. Zavalishina, and N. V. Morozov, “The main social engineering techniques aimed at hacking information systems,” in Proceedings - 2021 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2021, 2021, pp. 471–473. doi: 10.1109/USBEREIT51232.2021.9455031.

W. Syahputra, Y. Ananda, and L. A. Siregar, “Perancangan Sistem Keamanan Brankas Bertingkat Menggunakan KTP Elektronik Dan Verifikasi Smartphone,” Semin. Nas. Tek. UISU, 2022.

G. Chudra et al., “Uji dan analisis kerentanan mahasiswa Universitas X terhadap serangan rekayasa sosial,” J. Inov. Inform. Univ. Pradita, vol. Volume 7, 2022.

A. Gupta, S. Palwe, and D. Keskar, “Fake Email and Spam Detection: User Feedback with Naives Bayesian Approach,” 2020, p. ,pp. 41–47. doi: 10.1007/978-981-15-0790-8_5.

R. Tjut Adek, M. Fikry, and U. Khalil, “News Opinion Classification Application With Support Vector Machine Algorithm Using Framework Codeigniter,” J. Informatics Telecommun. Eng., vol. 5, no. 1, pp. 160–166, 2021, doi: 10.31289/jite.v5i1.5189.

D.- Andriansyah and Eka Wulansari Fridayanthie, “Optimization of Support Vector Machine and XGBoost Methods Using Feature Selection to Improve Classification Performance,” J. Informatics Telecommun. Eng., vol. 6, no. 2, pp. 484–493, 2023, doi: 10.31289/jite.v6i2.8373.

X. Ding, J. Liu, F. Yang, and J. Cao, “Random radial basis function kernel-based support vector machine,” J. Franklin Inst., vol. 358, no. 18, pp. 10121–10140, 2021, doi: 10.1016/j.jfranklin.2021.10.005.

S. Rahman, M. Ramli, F. Arnia, A. Sembiring, and R. Muharar, “Convolutional Neural Network Customization for Parking Occupancy Detection,” in Proceedings of the International Conference on Electrical Engineering and Informatics, 2020, pp. 1–6. doi: 10.1109/ICELTICs50595.2020.9315509.

E. A. Olivetti et al., “Data-driven materials research enabled by natural language processing and information extraction,” Applied Physics Reviews, vol. 7, no. 4. 2020. doi: 10.1063/5.0021106.

M. A. Hussain Sujon and H. Mustafa, “Comparative Study of Machine Learning Models on Multiple Breast Cancer Datasets,” Int. J. Adv. Sci. Comput. Eng., vol. 5, no. 1, pp. 15–24, 2023, doi: 10.62527/ijasce.5.1.105.

D. S. Pamungkas, S. K. Risandriya, and A. Rahman, “Classification of Finger Movements Using EMG Signals with PSO SVM Algorithm,” Int. J. Adv. Sci. Comput. Eng., vol. 4, no. 3, p. pp 210-219, 2022, doi: 10.30630/ijasce.4.3.100.

W. S. Noble, What is a support vector machine?, vol. 24, no. 12. 2006. doi: 10.1038/nbt1206-1565.

L. Vanneschi and S. Silva, “Support Vector Machines,” in Natural Computing Series, 2023, p. pp.207–235. doi: 10.1007/978-3-031-17922-8_10.

G. I. Webb, “Encyclopedia of Machine Learning and Data Science,” Encycl. Mach. Learn. Data Sci., no. April, 2020, doi: 10.1007/978-1-4899-7502-7.

R. Yacouby and D. Axman, “Probabilistic Extension of Precision, Recall, and F1 Score for More Thorough Evaluation of Classification Models,” 2020, pp. 79–91. doi: 10.18653/v1/2020.eval4nlp-1.9.

P. Nagaraj, V. Muneeswaran, G. Shyam Sundar Reddy, V. Bharath Kumar, B. Madhan Mohan, and S. Kumar, “Automatic Email Spam Classification Using Naïve Bayes,” in 2023 International Conference on Computer Communication and Informatics, ICCCI 2023, 2023, pp. 1–5. doi: 10.1109/ICCCI56745.2023.10128233.

O. E. Taylor and P. S. Ezekiel, “A Model to Detect Spam Email Using Support Vector Classifier and Random Forest Classifier,” 2020.

A. Kadhim Ali, A. Mohsin Abdullah, and S. Fawzi Raheem, “Impact the Classes’ Number on the Convolutional Neural Networks Performance for Image Classification,” Int. J. Adv. Sci. Comput. Eng., vol. 5, no. 2, pp. 64–69, 2023.




DOI: https://doi.org/10.34007/incoding.v5i1.831

Article Metrics

Abstract view : 32 times
PDF - 11 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 INCODING: Journal of Informatics and Computer Science Engineering