Klasifikasi Tumbuhan Obat Berdasarkan Citra Daun Menggunakan Algoritma CNN

Nicolas Novelico Sinaga(1), Arnes Sembiring(2),


(1) Universitas Medan Area
(2) Universitas Medan Area
DOI: https://doi.org/10.34007/incoding.v5i1.833

Keywords


Medicinal Plant Classification; Leaf Image; CNN; Deep Learning; MobileNetV2.

Full Text:

PDF

References


B. Setiyono, M. Riv, Q. Q. Aini, and T. H. Soegianto, “Identifikasi Tanaman Obat Indonesia Melalui Citra Daun Menggunakan Metode Convolutional Neural Network (CNN) Identification Of Indonesian Medicine Plants Through Leaf Image Using The Convolutional Neural Network (CNN,” Method, vol. 10, no. 2, pp. 385–392, doi: 10.25126/jtiik.2023106809.

R. Gusnedi, “Analisis Nilai Absorbansi dalam Penentuan Kadar Flavonoid untuk Berbagai Jenis Daun Tanaman Obat,” Pillar Phys., vol. 2, pp. 76–83.

E. Sinaga, M. Rina, and others, “Kadar Flavonoid Total, Daya Antioksidan dan Daya Hepatoprotektif Ekstrak Etanol Rimpang Temu Tis (Curcuma purpurascens),” 2018.

T. C. Widiastuti et al., “Pemanfaatan Tanaman Obat untuk Mengatasi Penyakit Diabetes Melitus di Kota Kebumen,” J. Farm. Klin. dan Sains, vol. 2, no. 1, pp. 87–96, 2022.

D. A. Nurlitasari, R. Magdalena, and R. Y. N. Fu’adah, “Analisis Performansi Sistem Klasifikasi Kanker Kulit Menggunakan Convolutional Neural Network,” J. Electr. Syst. Control Eng., vol. 5, no. 2, pp. 91–99, 2022, doi: 10.31289/jesce.v5i2.5691.

S. Rizal, N. Kumalasari Caesar, N. Ibrahim, H. Vidya, S. Saidah, and Y. Nur Fu, “Klasifikasi Daun Teh Seri Gmb Menggunakan Convolutional Neural Network Tea Leaves Gmb Series Clasiffication Using Convolutional Neural Network,” Jesce, vol. 3, no. 2, p. 2020, 2020, [Online]. Available: http://ojs.uma.ac.id/index.php/jesce

T. Triase, “A Penerapan Deep Learning untuk Identifikasi Citra Tanaman Obat Anti-inflamasi Menggunakan Algoritma CNN: Penerapan Deep Learning untuk Identifikasi Citra Tanaman Obat Anti-inflamasi Menggunakan Algoritma CNN,” Indones. J. Comput. Sci., vol. 12, no. 6, 2023.

A. B. Faqih and D. Avianto, “Identifikasi Penyakit Daun pada Tanaman Solanaceae dan Rosaceae Menggunakan Deep Learning,” J. Teknol. Terpadu, vol. 10, no. 2, pp. 105–116, 2024.

B. Setiyono et al., “Identifikasi Tanaman Obat Indonesia Melalui Citra Daun Menggunakan Metode Convolutional Neural Network (CNN),” J. Teknol. Inf. dan Ilmu Komput., 2023, doi: 10.25126/jtiik.2023106809.

S. A. E. Albakia and R. A. Saputra, “Identifikasi Jenis Daun Tanaman Obat Menggunakan Metode Convolutional Neural Network (CNN) Dengan Model VGG16,” J. Inform. Polinema, vol. 9, no. 4, pp. 451–460, Aug. 2023, doi: 10.33795/JIP.V9I4.1420.

W. Zhu, L. Xie, J. Han, and X. Guo, “The application of deep learning in cancer prognosis prediction,” Cancers (Basel)., vol. 12, no. 3, pp. 1–19, 2020, doi: 10.3390/cancers12030603.

X. Liu, L. Song, S. Liu, and Y. Zhang, “A review of deep-learning-based medical image segmentation methods,” Sustain., vol. 13, no. 3, pp. 1–29, 2021, doi: 10.3390/su13031224.

M. Kołodziej, A. Majkowski, and A. Rysz, “Implementation of Machine Learning and Deep Learning Techniques for the Detection of Epileptic Seizures Using Intracranial Electroencephalography,” Appl. Sci., vol. 13, no. 15, 2023, doi: 10.3390/app13158747.

J. Naranjo-Torres, M. Mora, R. Hernández-García, R. J. Barrientos, C. Fredes, and A. Valenzuela, “A review of convolutional neural network applied to fruit image processing,” Appl. Sci., vol. 10, no. 10, 2020, doi: 10.3390/app10103443.

S. Adiningsi and R. A. Saputra, “IDENTIFIKASI JENIS DAUN TANAMAN OBAT MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK ( CNN ) DENGAN MODEL VGG16,” pp. 451–460, 2020.

M. A. Wani, F. A. Bhat, Afzal, and Dkk, Advances in Deep Learning, vol. 57. 2019. doi: 10.1007/978-981-13-6794-6.

A. E. Wijaya, W. Swastika, and O. H. Kelana, “IMPLEMENTASI TRANSFER LEARNING PADA CONVOLUTIONAL NEURAL NETWORK UNTUK DIAGNOSIS COVID-19 DAN PNEUMONIA PADA CITRA X-RAY,” vol. 2, no. 1, 2021.

F. A. A. Harahap, A. N. Nafisa, E. N. D. B. Purba, and N. A. Putri, “Implementasi Algoritma Convolutional Neural Network Arsitektur Model Mobilenetv2 Dalam Klasifikasi Penyakit Tumor Otak Glioma, Pituitary Dan Meningioma,” J. Teknol. Informasi, Komputer, dan Apl. (JTIKA ), vol. 5, no. 1, pp. 53–61, 2023, doi: 10.29303/jtika.v5i1.234.

A. M. Rizki and N. Marina, “Klasifikasi Kerusakan Bangunan Sekolah Menggunakan Metode Convolutional Neural Network Dengan Pre-Trained Model Vgg-16,” J. Ilm. Teknol. dan Rekayasa, vol. 24, no. 3, pp. 197–206, 2019, doi: 10.35760/tr.2019.v24i3.2396.

S. Susilawati and M. Muhathir, “Analisis Pengaruh Fungsi Aktivasi, Learning Rate Dan Momentum Dalam Menentukan Mean Square Error (MSE) Pada Jaringan Saraf Restricted Boltzmann Machines (RBM),” J. Informatics Telecommun. Eng., vol. 2, no. 2, p. 77, 2019, doi: 10.31289/jite.v2i2.2162.

J. Beno, A. . Silen, and M. Yanti, “No 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析Title,” Braz Dent J., vol. 33, no. 1, pp. 1–12, 2022.




DOI: https://doi.org/10.34007/incoding.v5i1.833

Article Metrics

Abstract view : 26 times
PDF - 6 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 INCODING: Journal of Informatics and Computer Science Engineering